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ALCOVE: An Exemplar-Based Connectionist Model of Category Learning

John K. Kruschke

Indiana University Bloomington

ALCOVE (attention learning covering map) is a connectionist model of category learning that
incorporates an exemplar-based representation (Medin & Schaffer, 1978; Nosofsky, 1986) with
error-driven learning (Gluck & Bower, 1988; Rumelhart, Hinton, & Williams, 1986). ALCOVE
selectively attends to relevant stimulus dimensions, is sensitive to correlated dimensions, can ac-
count for a form of base-rate neglect, does not suffer catastrophic forgetting, and can exhibit 3-stage
(U-shaped) learning of high-frequency exceptions to rules, whereas such effects are not easily ac-
counted for by models using other combinations of representation and learning method.

This article describes a connectionist model of category
learning called ALCOVE (attention learning covering map).
Any model of category learning must address the two issues of
what representation underlies category knowledge and how
that representation is used in learning. ALCOVE combines the
exemplar-based representational assumptions of Nosofsky’s
(1986) generalized context model (GCM) with the error-driven
learning assumptions of Gluck and Bower’s (1988a, 1988b) net-
work models. ALCOVE extends the GCM by adding a learning
mechanism and extends the network models of Gluck and
Bower by allowing continuous dimensions and including ex-
plicit dimensional attention learning. ALCOVE can be con-
strued as a combination of exemplar models (€.g., Medin &
Schaffer, 1978; Nosofsky, 1986) with network models (Gluck &
Bower, 1988a, 1988b), as suggested by Estes (1988; Estes,
Campbell, Hatsopoulos, & Hurwitz, 1989; Hurwitz, 1990). Di-
mensional attention learning allows ALCOVE to capture hu-
man performance where other network models fail (Gluck &
Bower, 1988a), and error-driven learning in ALCOVE gener-
ates interactions between exemplars that allow it to succeed
where other exemplar-based models fail (¢.g., Estes et al., 1989;
Gluck & Bower, 1988b).

ALCOVE is also closely related to standard back-propaga-
tion networks (Rumelhart, Hinton, & Williams, 1986). Al-
though ALCOVE is a feed-forward network that learns by gra-
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dient descent on error, it is unlike standard back propagation in
its architecture, its behavior, and its goals. Unlike the standard
back-propagation network, which was motivated by generaliz-
ing neuronlike perceptrons, the architecture of ALCOVE was
motivated by a molar-level psychological theory, Nosofsky’s
(1986) GCM. The psychologically constrained architecture re-
sults in behavior that captures the detailed course of human
category learning in many situations where standard back prop-
agation fares less well. Unlike many applications of standard
back propagation, the goal of ALCOVE is not to discover new
(hidden-layer) representations after lengthy training but rather
to model the course of learning itself by determining which
dimensions of the given representation are most relevant to the
task and how strongly to associate exemplars with categories.

The purposes of this article are to introduce the ALCOVE
model, demonstrate its application across a variety of category
learning tasks, and compare it with other models to highlight its
mechanisms. The organization of the article is as follows: First,
the ALCOVE model is described in detail; then, its ability to
differentially attend to relevant or irrelevant dimensions is dem-
onstrated by applying it to the classic category learning task of
Shepard, Hovland, and Jenkins (196 1) and to the correlated-di-
mensions situation studied by Medin, Altom, Edelson, and
Freko (1982). Next, the interaction of exemplars during learn-
ing is demonstrated by showing that ALCOVE accounts for the
apparent base-rate neglect observed by Gluck and Bower
(1988a, 1988b) and by Estes et al. (1989) and by showing that
ALCOVE learns Medin and Schwanenflugel’s (1981) nonlin-
early separable categories faster than the linearly separable
ones. Afterward, the representation used in ALCOVE is con-
trasted with that used in standard back propagation, and it is
shown that ALCOVE does not suffer the catastrophic retroac-
tive interference seen in standard back propagation (McClos-
key & Cohen, 1989; Ratcliff, 1990). Finally, I include a provoca-
tive demonstration of ALCOVE? ability to exhibit three-stage
learning of rules and exceptions (cf. Rumethart & McClelland,
1986) and speculate how ALCOVE might interact with a rule-
hypothesizing system.

The Model

ALCOVE is a feed-forward connectionist network with three
layers of nodes. Its basic computations are a direct implementa-
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tion of Nosofsky’s (1986) GCM. Like the GCM, ALCOVE as-
sumes that stimuli can be represented as points in a multidi-
mensional psychological space, as determined by multidimen-
sional scaling (MDS) algorithms (e.g., Shepard, 1957, 1962a,
1962b). Each input node encodes a single psychological dimen-
sion, with the activation of the node indicating the value of the
stimulus on that dimension. For example, if the first node
corresponds to perceived size, and the perceived size of the
given stimulus is some scale value », then the activation of the
first node is ». The activation of the ith input node is denoted
a;”, and the complete stimulus is denoted by the column vector
a™ = (@,", a,”, - - - ). Figure | shows the basic architecture of
ALCOVE, illustrating the case of just two input dimensions (in
general the model can have any number of input dimensions).

Each input node is gated by a dimensional attention strength,
«a;. The attention strength on a dimension reflects the relevance
of that dimension for the particular categorization task at hand.
Before training begins, the model is initialized with equal atten-
tion strengths on all dimensions, and as training proceeds, the
model learns to allocate more attention to relevant dimensions
and less to irrelevant dimensions. Attention Learning is an im-
portant aspect of the model and gives ALCOVE the first two
letters of its name. The function of the attention strengths will
be described in more detail after the hidden nodes are de-
scribed.

Each hidden node corresponds to a position in the multidi-
mensional stimulus space. In the simplest version of ALCOVE,
there is a hidden node placed at the position of every training
exemplar. For example, if the input dimensions are perceived
size and perceived brightness, and one of the training stimuli has
scale values of size = » and brightness = £, then there is a hidden
node placed at the position §, £). In a more complicated version,
discussed at the end of the article, hidden nodes are scattered
randomly across the space, forming a covering map of the input
space. The covering map gives ALCOVE the last four letters of
its name. Throughout the body of this article, however, the
exemplar-based version is used.

For a given input stimulus, each hidden node is activated
according to the psychological similarity of the stimulus to the
exemplar at the position of the hidden node. The similarity
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Figure 1. The architecture of ALCOVE (attention learning covering
map). (See The Model section.)

function is the same as that used in the GCM, which in turn
was motivated by Shepard’s 1957, 1958, 1987) classic theories
of similarity and generalization. Let the position of the jth
hidden node be denoted as (4, A, - - - ), and let the activation
of the jth hidden node be denoted as a*. Then

ajhid = exp [—C (2 ai|hﬁ — aiinlr)q/r]’ (1)

where ¢ is a positive constant called the specificity of the node,
where the sum is taken over all input dimensions, and where r
and g are constants determining the psychological-distance
metric and similarity gradient, respectively. In the applications
described in this article, separable psychological dimensions
are assumed, so a city-block metric ¢ = 1) with exponential
similarity gradient (g = 1) is used (Shepard, 1987). For integral
dimensions, a Euclidean metric (" = 2) could be used (e.g., No-
sofsky, 1987; Shepard, 1964).

The pyramids in the middle layer of Figure | show the activa-
tion profiles of hidden nodes, as determined by Equation 1 with
r= g = 1. Because the activation indicates the similarity of the
input stimulus to the exemplar coded by the hidden node, the
activation falls off exponentially with the distance between the
hidden node and the input stimulus. The city-block metric im-
plies that the iso-similarity contours are diamond shaped. The
specificity constant, ¢, determines the overall width of the acti-
vation profile. Large specificities imply very rapid similarity
decrease and hence a narrow activation profile, whereas small
specificities correspond to wide profiles. Psychologically, the
specificity of a hidden node indicates the overall cognitive dis-
criminability or memorability of the corresponding exemplar.
The region of stimulus space that significantly activates a hid-
den node will be loosely referred to as that node’s receptive field.

Equation 1 indicates the role of the dimensional attention
strengths, «;. They act as multipliers on the corresponding di-
mension in computing the distance between the stimulus and
the hidden node (cf. Carroll & Chang, 1970). A closely related
type of attentional weighting was introduced by Medin and
Schaffer (1978) in their context model and generalized into the
form shown in Equation 1 by Nosofsky (1984, 1986).

The attention strengths stretch and shrink dimensions of the
input space so that stimuli in different categories are better
separated and stimuli within categories are better concen-
trated. Consider a simple case of four stimuli that form the
corners of a square in input space, as indicated in Figure 2. If
the two left stimuli are mapped to one category (indicated by
dots), and the two right stimuli are mapped to another category
(indicated by xs), then the separation of the categories can be
increased by stretching the horizontal axis, and the proximity
within categories can be increased by shrinking the vertical
axis. Stretching a dimension can be achieved by increasing its
attentional value; shrinking can be achieved by decreasing its
attentional value. In ALCOVE, the dimensions most relevant
to the category distinction learn larger attention strengths, and
the less relevant dimensions learn smaller attention strengths.

Each hidden node is connected to output nodes that corre-
spond to the possible response categories. The connection from
the jth hidden node to the kth category node has a connection
weight denoted wy;. Because the hidden node is activated only
by stimuli in a restricted region of input space near its corre-
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Figure 2. Stretching the horizontal axis and shrinking the vertical
axis causes exemplars of the two categories (denoted by dots and xs) to
have greater between-categories dissimilarity and greater within-cate-
gory similarity. (The attention strengths in the network perform this
sort of stretching and shrinking function. From “Attention, Similarity,
and the Identification—Categorization Relationship” by R. M. No-
sofsky, 1986, Journal of Experimental Psychology: General, 115, p. 42.
Copyright 1986 by the American Psychological Association. Adapted
by permission.)

sponding exemplar, the connection weight is called the associa-
tion weight between the exemplar and the category. The output
(category) nodes are activated by the same linear rule used in
the GCM and in the network models of Gluck and Bower
(1988a, 1988b):

akout = 2 Wy /ajhid- (2)
hid
J
In ALCOVE, unlike the GCM, the association weights are ad-
justed by an interactive, error-driven learning rule and can take
on any real value, including negative values.

To compare model performance with human performance,
the category activations must be mapped onto response proba-
bilities. This is done in ALCOVE using the same choice rule as
was used in the GCM and network models, which was moti-
vated in those models by the classic works of Luce (1963) and
Shepard (1957). Thus,

Pr (K) = exp (¢pax™)/ 2 exp (pa,™), (3)

out
k
where ¢ is a real-valued mapping constant. In other words, the
probability of classifying the given stimulus into category K is
determined by the magnitude of category K’s activation (expo-
nentiated) relative to the sum of all category activations (expo-
nentiated).

Here is asummary of how ALCOVE categorizes a given stim-
ulus. Suppose, for example, that the model is applied to the
situation illustrated in Figure 2. In this case, there are two psy-
chological dimensions, hence two input nodes; four training
exemplars, hence four hidden nodes; and two categories, hence
two output nodes. When an exemplar is presented to AL-
COVE, the input nodes are activated according to the compo-
nent dimensional values of the stimulus. Each hidden node is
then activated according to the similarity of the stimulus to the
exemplar represented by the hidden node, using the attention-
ally weighted metric of Equation 1. Thus, hidden nodes near the
input stimulus are strongly activated, and those farther away in
psychological space are less strongly activated. Then the output
(category) nodes are activated by summing across all the hidden
(exemplar) nodes, weighted by the association weights between
the exemplars and categories, as in Equation 2. Finally, re-
sponse probabilities are computed using Equation 3.

It was stated that the dimensional attention strengths, «;, and
the association weights between exemplars and categories, w;;,
are learned. The learning procedure is gradient descent on
sum-squared error, as used in standard back propagation (Ru-
melhart et al.,, 1986) and in the network models of Gluck and
Bower (1988a, 1988b). In the learning situations addressed by
ALCOVE, each presentation of a training exemplar is followed
by feedback indicating the correct response. The feedback is
coded in ALCOVE as feacher values, t, given to each category
node. For a given training exemplar and feedback, the error
generated by the model is defined as

E ="1 3 (tx — a™), (4a)

out
k

with the teacher values defined as

max (+1, ¢,°) if the stimulus

is in Category K, (4b)
min (—1, g,°) if the stimulus

is not in Category K.

tk=

These teacher values are defined so that activations “better than
necessary” are not counted as errors. Thus, if a given stimulus
should be classified as a member of the kth category, then the
kth output node should have an activation of at least +1. If the
activation is greater than 1, then the difference between the
actual activation and +1 is not counted as error. Because these
teacher values do not mind being outshone by their students, 1
call them “humble teachers.” The motivation for using humble
teacher values is that the feedback given to subjects is nominal,
indicating only which category the stimulus belongs to and not
the degree of membership. Hence, the teacher used in the
model should only require some minimal level of category-node
activation and should not require all exemplars ultimately to
produce the same activations. Humble teachers are discussed
further at the conclusion of the article.

On presentation of a training exemplar to ALCOVE, the asso-
ciation strengths and dimensional attention strengths are
changed by a small amount so that the error decreases. Follow-
ing Rumelhart et al. (1986), they are adjusted proportionally to
the (negative of the) error gradient, which leads to the following
learning rules (derived in the Appendix):

Aw®™ = ANl — akow)ajhid, (5)

Aa; =N 22 (e — akam)wkj]ajhidclhji - a™|, (6)
hid out
ik

where the As are constants of proportionality (A > 0) called
learning rates. The same learning rate, A,,, applies to all the
output weights. Likewise, there is only one learning rate, A, for
all the attentional strengths. The dimensional attention
strengths are constrained to be nonnegative, as negative values
have no psychologically meaningful interpretation. Thus, if
Equation 6 were to drive an attention strength to a value less
than zero, then the strength is set to zero.

Learning in ALCOVE proceeds as follows: Foreach presenta-
tion of a training exemplar, activation propagates to the cate-
gory nodes as described previously. Then the teacher values are
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presented and compared with the actual category node activa-
tions. The association and attention strengths are then adjusted
according to Equations 5 and 6. Several aspects of learning in
ALCOVE deserve explicit mention.

First, learning is error driven. Both Equations 5 and 6 include
the error term (¢, — a,™), so that changes are proportional to
error. When there is no error, nothing changes. This is to be
contrasted with learning rules that are based on accumulating
constant increments on every trial, such as the array-exemplar
model (Estes, 1986a, 1986b, 1988; Estes et al., 1989) and context
model (Medin & Schaffer, 1978; Nosofsky, 1988b; Nosofsky,
Kruschke, & McKinley, in press). In such models, the system
changes independently of its actual performance.

Second, because of the similarity-based activations of the
hidden nodes, the training exemplars interact during learning.
For example, consider two training exemplars that are similar
to each other. Because of their similarity, when either one is
presented, both corresponding hidden nodes are activated (one
just partially); and because learning is proportional to the hid-
den node activations (see Equation 5), the association strengths
from both exemplars are adjusted (as long as there is error pres-
ent). This interactive property is also to be contrasted with mod-
els such as the array-exemplar model, in which learning affects
isolated exemplars one at a time (see also Matheus, 1988). The
interactive character of learning in ALCOVE is comparable to
the competitive nature of learning noted by Gluck and Bower
(1988a, 1988b) in their network models and gives ALCOVE the
ability to account for the base-rate neglect phenomena they
observed, as is described later.

There are other notable implications of interactive learning
in ALCOVE. It implies that similar exemplars from the same
category should enhance each other’s learning. Thus, it suggests
that prototypical exemplars should be learned faster than pe-
ripheral exemplars, if it can be assumed that prototypical ex-
emplars tend to be centrally located near several other exem-
plars from the same category. That is desirable insofar as it is
also observed in human data (e.g., Rosch, Simpson, & Miller,
1976). Interactive learning also suggests that the shape of the
category boundary will have no direct influence on the diffi-
culty of learning the category distinction; rather, difficulty
should be based on the clustering of exemplars (subject to the
additional complication of attentional learning). In particular,
it suggests that it is not necessary for linearly separable catego-
ries to be easier to learn than nonlinearly separable categories.
Human data again make this a desirable property (Medin &
Schwanenflugel, 1981).

A third property of learning in ALCOVE is that attention
learning can only adjust the relative importance of the dimen-
sions as given. ALCOVE cannot construct new dimensions to
attend to. For example, consider the situation in Figure 3, in
which the four training exemplars form the corners of a dia-
mond in the psychological space. Ideally, one might like to
stretch the space along the right diagonal to better separate the
two categories and shrink along the left diagonal to make
within-category exemplars more similar, but ALCOVE cannot
do that. Fortunately, it appears that people cannot do that ei-
ther, as is described later. This anisotropy in attentional learn-
ing implies that when modeling human data with ALCOVE,
one must be certain that the input dimensions used in the

Figure3. Attentional learning in ALCOVE (attention learning cover-
ing map) cannot stretch or shrink diagonally. (Compare with Figure 2.)

model match the psychological dimensions used by the human
subjects.

In all the applications described in this article, the psycholog-
ical dimensions are separable, not integral (Garner, 1974), but
the model does not necessarily depend on that. ALCOVE
might accommodate psychologically integral dimensions by
using a Euclidean distance metric (- = 2) in Equation 1 (No-
sofsky, 1987; Shepard, 1964). There is evidence to suggest that
people can, with effort, differentially attend to psychologically
integral dimensions when given opportunity to do so (e.g., No-
sofsky, 1987).

In summary, ALCOVE incorporates the exemplar-based rep-
resentation of Nosofsky’s (1987) GCM with error-driven learn-
ing as in Gluck and Bower’s (1988a, 1988b) network models.
ALCOVE extends the GCM in several ways: For learning asso-
ciation weights, it uses an error-driven, interactive rule, instead
of a constant-increment rule, that allows association weights in
ALCOVE to take on any positive or negative value. ALCOVE
also provides a mechanism for attention-strength learning,
whereas the GCM has none. ALCOVE extends Gluck and
Bower’s network models by allowing continuous input dimen-
sions and by having explicit dimensional attention learning. In
fitting ALCOVE to human data, there are four free parameters:
(@) the fixed specificity ¢ in Equation 1, (b) the probability-map-
ping constant ¢ in Equation 3, (¢) the association weight-learn-
ing rate A, in Equation 5, and (d) the attention-learning rate A,
in Equation 6.

_ Applications
Learning to Attend to Relevant Dimensions

In this section ALCOVE is applied to the category structures
used in the classic research of Shepard, Hovland, and Jenkins
(1961). There are three reasons for considering the work of
Shepard et al.: First, the results of the study provide fundamen-
tal human data that any model of category learning should
address, and in particular they have served as a benchmark for
several recent models (e.g., Anderson, 1991; Gluck & Bower,
1988b; Nosofsky, 1984). Second, the structures described by
Shepard et al. are well suited for demonstrating the capabilities
of ALCOVE. Third, Shepard et al. argued explicitly that models
of categorization based on reinforcement learning and graded
generalization could not account for their data unless such mod-
els included some (unspecified) mechanism for selective atten-
tion. As ALCOVE does include such a mechanism, it faces a
direct theoretical and empirical challenge.

The stimuli used by Shepard et al. (1961) varied on three
binary dimensions. For example, figures could vary in shape
(square vs. triangle), size (large vs. small), and color (filled vs.
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open). Each of the resulting eight training exemplars was as-
signed to one of two categories, such that both categories had
four exemplars. It turns out that there are only six structurally
distinct types of category assignments. Figure 4 shows the six
types, with the eight exemplars indicated by the corners of a
cube. The category assignment of an exemplar is indicated by
either a filled or blank circle. For example, the top-left cube
shows that for Category Type I, Exemplars 1 to 4 are assigned to
the blank Category, and Exemplars 5 to 8 are assigned to the
filled category. Any assignment of exemplars to categories, with
four exemplars in each category, can be rotated or reflected into
one of the structures shown in Figure 4.

A primary concern of Shepard et al. (1961) was to determine
the relative difficulty of learning the six category types. Intu-
itively, Type I should be particularly easy to learn because only
information about Dimension 1 is relevant to the categorization
decision; variation on Dimensions 2 and 3 leads to no variation
in category membership. However, Type Il requires attention to
both Dimensions | and 2 and therefore should be more difficult
to learn. (Type II is the exclusive-or [XOR ] problem in its two
relevant dimensions) Types III, IV, V, and VI require informa-
tion about all three dimensions to make correct categoriza-
tions, but the dimensions are not equally informative in every
type. For example, in Type V, six of eight exemplars can be
correctly classified by cons1der1ng only Dimension 1, with at-
tention to Dimensions 2 and 3 needed only for the remaining
two exemplars. On the other hand, Type VI requires equal at-
tention to all the dimensions, because exemplars of each cate-
gory are symmetrically distributed on the dimensions. (Type

pay e

Type I Type 11 Type III
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Type IV Type V Type VI
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Figure 4. The six category types used by Shepard, Hovland, and Jen-
kins (1961). (The three binary stimulus dimensions [labeled by the
trident at lower right] yield eight training exemplars, numbered at the
corners of the lower-left cube. Category assignments are indicated by
the open or filled circles. From “Learning and Memorization of Classi-
fications” by R. N. Shepard, C. L. Hovland, & H. M. Jenkins, 1961,
Psychological Monographs, 75, 13, Whole No. 517, p. 4. In the public
domain.)

V1 is the parity problem in three dimensions) Thus, if it takes
more cognitive effort or capacity to consider more dimensions,
then Type I should be easiest to learn, followed by Types II, 111,
IV, Vand VI

Shepard et al. (1961) found empirically that the order of dif-
ficulty was I < II < (II1, IV, V) < VI. That is, Type I was easiest,
followed by Type I, followed by Types II1, IV, and V (they were
very close) and Type V1. Difficulty of learning was measured by
the total number of errors made until the subject correctly clas-
sified each of the eight exemplars four times in a row. Other
measures, such as number of errors in recall, and response
time, showed the same ordering.

How does one explain, in a formal quantitative theory, the
observed difficulty of the types? Perhaps the most direct ap-
proach is a stimulus generalization hypothesis: Category struc-
tures that assign highly similar stimuli to the same category and
highly dissimilar stimuli to different categories should be rela-
tively easy to learn, whereas structures in which similar stimuli
are mapped to different categories and dissimilar stimuli are
assigned to the same category should be relatively difficult to
learn. Shepard et al. (1961) formalized that hypothesis by mea-
suring interstimulus similarities (inferred from separately ob-
tained identification-confusion data) and by computing the
difficulty of category types by considering similarities of all
patrs of exemplars from different categories. They considered
several variants of the generalization hypothesis, all of which
failed to predict the observed order of learning. They argued
that “the most serious shortcoming of the generalization theory
is that it does not provide for a process of abstraction (or selec-
tive attention).” (Shepard et al., 1961, p. 29). The idea was that
by devoting attention to only relevant dimensions, confus-
ability of stimuli that differed on those dimensions would be
greatly reduced. In that way, Types I and I, especially, would be
significantly easier to learn than predicted by a pure generaliza-
tion theory.

The notion of selective attention was formalized by Nosofsky
(1984, 1986) in his GCM. The GCM added attention factors to
each dimension of the input space. By using optimal attention
weights, which maximized the average percentage correct, or
by using attention weights freely estimated to best fit the data,
the GCM was able to correctly predict the relative difficulties
of the six category types, but the GCM has no attention learn-
ing mechanism.

Shepard et al. (1961) considered a variety of learning the-
ories, to see if any provided the necessary attention-learning
mechanism. Their answer, in brief, was no. Cue conditioning
theories, in which associations between single cues (e.g., square)
and categories are gradually reinforced, are unable to account
for the ability to learn Types II, III, V, and V1, because no single
cue is diagnostic of the category assignments. Pattern condition-
ing theories, in which associations between complete configura-
tions of cues (e.g., large, white square) and categories are gradu-
ally reinforced, cannot account for the rapidity of learning
Types I and 1I. They concluded

Thus, although a theory based upon the notions of conditioning
and, perhaps, the adaptation of cues at first showed promise of
accounting both for stimulus generalization and abstraction, fur-
ther investigation indicated that it does not, in any of the forms
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yet proposed, yield a prediction of the difficulty of each of our six
types of classifications. (Shepard et al,, 1961, p. 32)

Gluck and Bower (1988a) combined cue and pattern condi-
tioning into their “configural-cue model” The configural-cue
model assumes that stimuli are represented by values on each
single dimension, plus pairs of values on each pair of dimen-
sions, plus triplets of values on each triplet of dimensions, and
so on. Thus, for the stimuli from the Shepard et al. (1961) study,
there are 6 one-value cues (two for each dimension), plus 12
two-value configural cues (four for each pair of dimensions),
plus 8 three-value configural cues (the eight full stimuli them-
selves), yielding a total of 26 configural cues. Each configural
cue is represented by an input node in a simple network, con-
nected directly to category nodes. Presence of a configural cue
is indicated by activating (¢ = +1) the corresponding input
node, and absence is indicated by no activation. The model
learns by gradient descent on sum-squared error. For the config-
ural-cue model, Gluck and Bower made no explicit mapping
from category-node activations to response probabilities, but in
other network models they used the choice function of Equa-
tion 3 so that mapping is also assumed here. The configural-cue
model has two parameters, the learning rate for the connection
weights and the scaling constant ¢ in Equation 3. When applied
to the six category types of Shepard et al., the result was that the
configural-cue model failed to learn Type II fast enough (see
Figure 12 of Gluck & Bower, 1988a), as measured either by
cumulative errors during learning or by time until criterion
error level is reached. Thus Shepard et al’s conclusion persists:
Some mechanism for selective attention seems to be needed.!

ALCOVE was applied to the six category types by using
three input nodes (one for each stimulus dimension), eight hid-
den nodes (one for each training exemplar), and two output
nodes (one for each category). It was assumed that the three
physical dimensions of the stimuli had corresponding psycho-
logical dimensions. In the Shepard et al. experiments, the three
physical dimensions were counterbalanced with respect to the
abstract dimensions shown in Figure 4; therefore, the input
encoding for the simulation gave each dimension equal scales
(with alternative values on each dimension separated by one
scale unit), and equal initial attentional strengths (set arbitrarily
to 1/3). The association weights were initialized at zero, reflect-
ing the notion that before training there should be no associa-
tions between any exemplars and particular categories.

In the Shepard et al. (1961) study, the difficulty of any given
type was computed by averaging across subjects, each of whom
saw a different random sequence of training exemplars. In the
simulation, sequence effects were eliminated by executing
changes in association weights and attention strengths only
after complete epochs of all eight training exemplars. (In the
connectionist literature, epoch updating is also referred to as
batch updating)

Figure 5 (A and B) show learning curves generated by AL-
COVE when there was no attention learning and when there
was moderate attention learning, respectively FEach datum
shows the probability of selecting the correct category, averaged
across the eight exemplars within an epoch. For both graphs,
the response mapping constant was set to ¢ = 2.0, the specific-

ity was fixed at ¢ = 6.5, and the learning rate for association
weights was A, = 0.03. In Figure 5A, there was no attention
learning (\, = 0.0), and it can be seen that Type II is learned
much too slowly. In Figure 5B, the attention-learning rate was
raised to A, = 0.0033, and consequently Type II was learned
second fastest, as observed in human data. Indeed, it can be
seen in Figure 5B that the six types were learned in the same
order as people, with Type I the fastest, followed by Type II,
followed by Types II1, I'V, and V clustered together, followed by
Type VL

The dimensional attention strengths were redistributed as
expected. For Category Type I, the attention strength on the
relevant Dimension 1 increased, whereas attention to the two
irrelevant Dimensions 2 and 3 dropped nearly to zero. For Type
II, attention to the irrelevant Dimension 3 dropped to zero,
whereas attention to the two relevant Dimensions | and 2 grew
(equally for both dimensions). For Types III to VI, all three
dimensions retained large attention strengths. Type VI had all
of its attention strengths grow, thereby better segregating all the
exemplars. Such symmetrical growth of attention is function-
ally equivalent to increasing the specificities of all the hidden
nodes (see Equation 1).

From a model-testing perspective, it is reassuring to note that
the range of orderings illustrated in Figure 5 (A and B) are the
only orderings that ALCOVE is capable of generating (when r=
g =1). When the attention-learning rate is set to higher values,
the same ordering as in Figure 5B arises, but with Types I and I
learned even faster. When the specificity is made larger (or
smaller), the overall separation of the learning curves is less-
ened (or enlarged, respectively), but the same orderings persist.

! Recognizing the need to address the dimensional attention issue in
the configural-cue model, Gluck and Chow (1989) modified it by mak-
ing the learning rates on different modules of configural cues self-
adaptive. In the case of the Shepard, Hovland, and Jenkins (1961) cate-
gory types, there were seven different modules of configural cues: a
module for each of the three dimensions (each module containing 2
one-value cues), a module for each of the three distinct pairs of dimen-
sions (each module containing 4 two-value configural cues), and a mod-
ule for the combination of three dimensions (containing 8 three-value
configural cues). The learning rates for the seven modules were sepa-
rately self-modifying according to the heuristic described by Jacobs
(1988), which says that if weights change consistently across patterns,
then learning rates should increase. The modified configural-cue
model was indeed able to capture the correct ordering of the six cate-
gory types. Did the modified configural-cue model selectively attend
to individual dimensions? That is a difficult question to answer. For
example, in learning Type 11, it seems likely (details were not provided
in Gluck & Chow, 1989) that the modified configural-cue model in-
creased its learning rates for the module that combined Dimensions 1
and 2, but decreased the learning rates of all other modules, in particu-
lar the modules that individually encode Dimensions | and 2. Thus, it
increased attention to the combination of dimensions but decreased
attention to the individual dimensions. Although this might or might
not make sense psychologically, it is clear that further explication of
the modified configural-cue model is needed. On the other hand, AL-
COVE makes dimensional attention strengths an explicit part of the
model and, unlike the modified configural-cue model, allows continu-
ous-valued input dimensions.
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Figure 5. A: Results of applying ALCOVE (attention learning covering map) to the Shepard, Hovland,
and Jenkins (1961) category types, with zero attention learning. Here Type Il is learned as slowly as Type V
(the Type V curve is mostly obscured by the Type I curve). B: Results of applying ALCOVE to the Shepard
et al. category types, with moderate attention learning. Note that Type I1 is now learned second fastest, as

observed in human data. Pr = probability.

Adjusting the association-weight learning rate merely changes
the overall number of epochs required to reach a certain proba-
bility correct. .

ALCOVE accounts for the relative difficulty of Shepard et
al’s (1961) six category types by its ability to learn dimensional
attention strengths. Such an attentional-learning mechanism is
Jjust the sort of thing Shepard et al. called for in their theoretical
analyses. It is only fair to note, however, that Shepard et al. also
concluded that in addition to abstracting the relevant dimen-
sions, subjects formulated rules for specifying the categories.
How ALCOVE might interact with a rule-generating system is
discussed in a later section.

Learning to Attend to Correlated Dimensions

Medin et al. (1982) have noted that prototype and other “inde- .

pendent cue” models are not sensitive to correlations between
cues. In several experiments, they pitted single-cue diagnosti-
city against correlated cues to see which would be the better
determinant of human categorization performance. They used
a simulated medical diagnosis paradigm in which subjects were
shown hypothetical patterns of four symptoms. Each of the four
symptoms could take on one of two values; for example, watery
eyes versus sunken eyes. Subjects were trained on four exem-
plars of the fictitious disease Terrigitis (T) and four exemplars
of the fictitious disease Midosis (M). In this situation the four
symptoms are the four dimensions of the stimulus space, and
the two diseases are the two alternative categories. The abstract
structure of the categories is shown in Table 1. One important
aspect of the structure is that the first two symptoms are indi-
vidually diagnostic, in that p (Terrigitis|Symptom 1 = “") = .75
and p (Terrigitis|]Symptom 2 = “I”) = .75, whereas the third and
fourth symptoms are not individually diagnostic, each being

associated with each disease 50% of the time. Another impor-
tant aspect of the structure is that the third and fourth symp-
toms are perfectly correlated in the training set, so that their
combination forms a perfect predictor of the disease category.
Thus, symptoms three and four are either both 1 or both 0 for
cases of Terrigitis, but they are different values for cases of
Midosis.

If subjects learn to attend to the correlated third and fourth
symptoms to make their diagnoses, then when tested with
novel symptom patterns, they should choose Terrigitis when-
ever the third and fourth symptoms agree. On the other hand, if
subjects learn to use the first and second symptoms, then they
should choose Terrigitis more often when those symptom val-
ues are 1.

Subjects were trained on the first eight exemplars of Table 1
using a free-inspection procedure. Unlike training paradigms
in which stimuli are shown sequentially with a definite fre-
quency, Medin et al. (1982) allowed their subjects to freely in-
spect the eight exemplars during a 10-min period (each exem-
plar was written on a separate card). After the 10-min training
period, subjects were shown each of the possible 16 symptom
combinations and asked to diagnose them as either Terrigitis or
Midosis. The results are reproduced in Table 1. Three impor-
tant trends are evident in the data. First, subjects were fairly
accurate in classifying the patterns on which they had been
trained (Exemplars T1-T4 and M1~M4), choosing the correct
disease category 80% of the time. Second, subjects were sensi-
tive to the diagnostic value of the first and second symptoms, in
that Novel Patterns N3 and N4 were classified as Terrigitis
more often than Patterns N1 and N2, and Patterns N5 and N6
were classified as Terrigitis more often than Patterns N7 and
N8. Third, subjects were also apparently quite sensitive to the
correlated features, because they classified Patterns N1 to N4,
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Table 1

Patterns Used by Medin, Altom, Edelson, and Freko
(1982, Experiment 4) and Probabilities

of Classifying as Terrigitis After Training

Exemplar Symptoms Observed ALCOVE Config cue
T1 1111 .88 .82 .76
T2 0111 .89 .78 .76
T3 1100 73 .82 .76
T4 1000 a7 .78 .76
M1 1010 12 22 25
M2 0010 17 .18 25
M3 0101 .25 22 25
M4 0001 33 .18 25
N1 0000 .53 .59 44
N2 0011 .53 .59 .44
N3 0100 .75 .64 .46
N4 1011 .67 .64 46
N5 1110 .45 41 .58
N6 1101 .38 41 .58
N7 0110 .36 .36 55
N8 1001 .28 .36 55

Note. Exemplar Labels T1-T4 refer to the four training exemplars for
Terrigitis, and exemplar Labels M1-M4 refer to the four training exem-
plars for Midosis. Exemplar Labels N1-N8 refer to novel test patterns.
Config cue = configural-cue model; ALCOVE = attention learning
covering map. Data are from “Correlated Symptoms and Simulated
Medical Classification” by D. L. Medin, M. W, Altom, S. M. Edelson,
& D. Freko, 1982, Journal of Experimental Psychology: Learning, Mem-
ory, and Cognition, 8, p.47. Copyright 1982 by the American Psycholog-
ical Association. Adapted by permission.

for which Symptoms 3 and 4 agree, as Terrigitis more than 50%
of the time, and they classified patterns N5 to N8, for which
Symptoms 3 and 4 differ, as Terrigitis less than 50% of the time.

The fourth column of Table 1 shows the results of applying
ALCOVE. Eight hidden nodes were used, corresponding to the
eight training exemplars. ALCOVE was trained for 50 sweeps,
or epochs, on the eight patterns (T1 to T4 and Ml to M4).
Association weights and attention strengths were updated after
every complete sweep through the eight training patterns, be-
cause Medin et al. (1982) did not present subjects with a fixed
sequence of stimuli. Best fitting parameter values were ¢ =
0.845, A, = 0.0260, ¢ = 2.36, and A, = 0.00965, yielding a
root-mean-squared deviation (RMSD) of 0.104 across the 16
patterns. (The number of epochs used was arbitrary and chosen
only because it seemed like a reasonable number of exposures
for a 10-min free-inspection period. The best fit for 25 epochs,
for example, yielded an RMSD identical to three significant
digits)

All three of the main trends in the data are captured by
ALCOVE. The trained exemplars were learned to 80% accu-
racy. The diagnosticities of the Ist two symptoms were picked
up, because Patterns N3 and N4 were classified as Terrigitis
with higher probability than Patterns N1 and N2, whereas Pat-
terns NS5 and N6 were classified as Terrigitis more often than
Patterns N7 and N8. It is important to note that the correlated
symptoms were detected, because Patterns N1 to N4 were clas-
sified as Terrigitis with more than 50% probability, and Patterns
NS5 to N8, with less than 50% probability.

ALCOVE accounts for the influence of correlated dimen-
sions by increasing attention to those dimensions. When the
attention-learning rate is very large, then the correlated Symp-
toms 3 and 4 get all the attention, and Symptoms 1 and 2 are
ignored. On the contrary, when attentional learning is zero,
then the diagnosticities of the first two dimensions dominate
the results. The results reported in Table 1 are for an interme-
diate attentional-learning rate, for which Symptoms 3 and 4 get
more attention than Symptoms 1 and 2, but some attention
remains allocated to Symptoms 1 and 2.

The configural-cue model was also fitted to these data. For
this situation, the configural-cue model requires 80 input
nodes: 8 singlet nodes, 24 doublet nodes, 32 triplet nodes, and
16 quadruplet nodes. The model was trained for 50 epochs with
epoch updating. The best-fitting parameter values were ¢ =
0.554 and A\, = 0.0849, yielding an RMSD of 0.217 across the
16 patterns, more than twice the RMSD of ALCOVE. As is
clear from the results shown in Table 1, the configural-cue
model is completely unable to detect the correlated symptoms,
despite the presence of doublet nodes that are sensitive to pair-
wise combinations of dimensions. Contrary to human perfor-
mance, the configural-cue model classifies Patterns N1 to N4 as
Terrigitis with less than 50% probability and Patterns N5 to N8
with more than 50% probability. That qualitative reversal is a
necessary prediction of the configural-cue model and cannot
be rectified by another choice of parameter values.

Gluck, Bower, and Hee (1989) showed that if only single
symptoms and pairwise symptom combinations were used,
with no three-way or four-way symptom combinations, then
correlated symptoms could be properly accentuated (for Exper-
iment 3 from Medin et al., 1982). However, by not including the
higher order combinations, the model was told a priori that
pairwise combinations would be relevant, which begs the fun-
damental question at issue here: namely, how it is that the rele-
vance is learned.

The simulation results shown in Table 1 are to be construed
qualitatively, despite the fact that they are quantitative best fits.
That is because the free-inspection training procedure used by
Medin et al. (1982) might very well have produced subtie effects
caused by subjects exposing themselves to some stimuli more
frequently than to others, or studying different exemplars later
in training than early on. The simulations, on the other hand,
assumed equal frequency of exposure and constant relative fre-
quencies throughout training. Moreover, there is a disparity in
the number of parameters in the two models: ALCOVE has
four, whereas the configural-cue model has two. Nevertheless,
the qualitative evidence is clear: Because of attention learning,
ALCOVE can account for sensitivity to correlated dimensions,
whereas the configural-cue model cannot.

Interactive Exemplars and Base-Rate Neglect

The previous sections emphasized the role of attention learn-
ing. This and the next section, instead, emphasize the learning
of association weights and illustrate how hidden nodes (exem-
plars) interact during learning because of their similarity-based
activations. In particular, it is shown that ALCOVE can quanti-
tatively fit trial-by-trial learning curves and account for the ap-
parent base-rate neglect observed by Gluck and Bower (1988b),
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Estes et al. (1989), Shanks (1990), and Nosofsky, Kruschke, and
McKinley (in press).

Like the Medin et al. (1982) research, Gluck and Bower
(1988b, Experiment 3) had subjects learn to classify lists of four
symptoms as one of two fictitious diseases. The base rates of the
two diseases were unequal, with one disease occurring 75% of
the time, and the other disease, 25% of the time. The diseases
were referred to as either the common or rare disease, respec-
tively (although subjects learned them using fictitious disease
names). Symptoms were binary valued, and their alternative
values were denoted sl and s1*, s2 and s2* and so on for each of
the four symptoms. The correspondence of symptoms with dis-
eases was probabilistic, so that on each trial a disease was se-
lected according to the base rates, and then symptoms were
selected according to the conditional probabilities in Table 2.
The probabilities were designed so that the conditional proba-
bility of the rare disease, given only Symptom sl, was 50%. That
is, according to Bayes’ Theorem, when base rates are properly
taken into account, Symptom sl is completely undiagnostic by
itself.

After considerable training, subjects estimated the probabil-
ity of the diseases given each symptom alone. It turned out that
when given Symptom sl alone, subjects reliably overestimated
the probability of the rare disease, apparently not taking full
account of the base rates of the diseases.

To explain that apparent base-rate neglect, Gluck and Bower
(1988a, 1988b) considered two candidate models of category
learning. One was a simple exemplar-based model, in which all
training instances were stored in memory along with their as-
signed categories. To predict categorization probabilities given
a single symptom, the memory was scanned for all exemplars
that matched on the given symptom, and the response probabil-
ity for a category was taken as the frequency of matching exem-
plars assigned to that category, relative to the total frequency of
matching exemplars. The simple exemplar-based model pre-
dicted that given Symptom sl alone, the estimated probability
of the rare disease should be .5, because exactly half of the
training exemplars containing sl were assigned to the rare dis-
ease. This is a special case of Medin and Schaffer’s (1978) con-
text model, in which the similarity of nonmatching features is
taken to be zero. Nosofsky et al. (in press) described this in
more detail, noting that if the context-model similarity parame-

Table 2
Conditional Probabilities of Disease
Symptoms in Four Experiments

Disease
Symptom Rare Common
sl (s1%) 6(4) 2(.8)
s2 (s2%) 4 (.6) 37
s3 (s3*) 37 4 (.6)
s4 (s4*) .2(.8) 6(4)

Note. The table indicates, for example, that p (slirare) = .6. The base
rate of the rare disease was .25, and the base rate of the common
disease was .75. Parentheses indicate alternative symptom ) values
and corresponding probabilities.

ters are taken to be nonzero, then the exemplar-based model
does even worse.

Gluck and Bower (1988a, 1988b) also considered the “double-
node” network model (so-called by Estes et al,, 1989), illus-
trated in Figure 6. In this model, each binary-valued stimulus
dimension is represented by a pair of input nodes, one node for
each of the alternative values on that dimension. When Symp-
tom sl was present, its node was activated, and the sl * node was
deactivated. Each input node was directly connected to output
nodes corresponding to the disease categories. The output
nodes were linear, and response probabilities for complete
(four-symptom) exemplars were computed as in Equation 3.
The connection weights were adapted by gradient descent on
error. When given just single symptoms, Gluck and Bower
(1988b) used the corresponding connection weights to indicate
ordinal estimates of disease probabilities. In subsequent work
by Estes et al. (1989), quantitative predictions of choice proba-
bilities, given single symptoms, were computed using Equation
3. The latter approach is also taken here.?

Unlike the simple exemplar-based model, the double-node
model was able to account for the base-rate neglect. As ex-
plained by Gluck and Bower (1988b), the error-driven learning
mechanism made individual symptom nodes “compete” for the
right to activate the output nodes, and in the context of the
other training patterns, symptom sl was a relatively better pre-
dictor of the rare disease than the common disease.

Estes et al. (1989) replicated and extended Gluck and Bower’s
(1988b) study. First, whereas Gluck and Bower were interested
in asymptotic behavior after lengthy training, Estes et al.
trained subjects on a single sequence of patterns so that trial-by-
trial learning curves could be fitted by competing models. Sec-
ond, whereas Gluck and Bower obtained explicit probability
estimates after training, Estes et al. also obtained choice proba-
bilities for each single symptom presented alone.

Estes et al. (1989) compared an exemplar-based model and (a
single-node version of ) the double-node model in their abilities
to fit the trial-by-trial training data and fit the posttraining
single-symptom transfer data. In fitting the training data, the
Gluck and Bower network model was superior to the simple
exemplar model. In fitting the transfer data, the exemplar
model could sometimes give better overall fits, but in no case
could it predict that p (rarejsl) > .50. In brief, the exemplar
models tested by Gluck and Bower (1988b) and by Estes et al.
failed to account for the apparent base-rate neglect. ALCOVE
is an exemplar-based model, so it faces a direct challenge by
these results.

Nosofsky et al. (in press) carried out partial replications and
extensions of the experiments reported by Gluck and Bower

2 Gluck and Bower (1988b) used a network with a single output node,
with +1 indicating Disease A and —1 indicating Disease B. Two output
nodes are used here because it is formally equivalent to the single node
version when just two categories are used, but unlike the single node
version it generalizes naturally to situations involving more than two
categories. The formal equivalence is easy to demonstrate: Suppose
there are two output nodes that always get equal- and opposite-teacher
values, so that g, = —a,*“ at all times. Then Equation 3 can be rewrit-
ten as Pr(K) = 1/{1 + exp 2¢a,”)], the form used by Gluck and
Bower. Compare with Footnote 2 of Gluck and Bower (1988by).
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sl {1,0)
st* {0,1}
s2 {1,0}
s2* {0,1}
s3 {1,0}
s3* {0,1}
s4 {1,0)
s4* {0,1}

disease A

disease B

Figure 6. The double node network model of Gluck and Bower
(1988b). (Numbers after each symptom indicate the activation of the
node pair when that symptom is present. From “From Conditioning to
Category Learning: An Adaptive Network Model” by M. A. Gluck and
G. H. Bower, 1988, Journal of Experimental Psychology: General, 117,
p. 239. Copyright 1988 by the American Psychological Association.
Adapted by permission)

(1988a, 1988b) and by Estes et al. (1989). The same sequence of
training exemplars and feedback as used by Estes et al. was used
in their experiment (hence the same probabilistic structure as
shown in Table 2). Instead of using the present versus absent
symptoms, as used by Estes et al., Nosofsky et al. (in press) used
substitutive symptoms, for example, stuffy nose versus runny
nose. One advantage of using substitutive symptoms is that
there is no confusion on single-symptom test trials as to
whether the unpresented symptoms are completely missing
from the stimulus or have the informative value “absent”
(Shanks, 1990). The Nosofsky et al. (in press) study also ob-
tained data from a richer set of transfer stimuli, including not
only single symptoms but also all pairs, triplets, and complete
quadruplets of symptoms and the null pattern. The larger
transfer data set is not considered here, as it is fully described in
Nosofsky et al. (in press). Instead, only the eight single symp-
toms considered by Gluck and Bower and by FEstes et al. are
discussed.

In the Nosofsky et al. (in press) experiment, 84 subjects were
trained on the same sequence of 240 exemplars, and then in the
transfer stage were presented with patterns without feedback.
(Details of the procedure can be found in Nosofsky et al., in
press) The proportion of subjects choosing each category was
computed for every trial. The models were fitted to those data,
using the sum of squared deviations as the measure of fit.

ALCOVE makes predictions on transfer trials by assuming
that missing stimulus dimensions are collapsed. An equivalent
method was used by Estes et al. (1989) to test their exemplar
model. Functionally, that means that the sum in Equation 1 is
taken only over the dimensions actually present in the stimulus.
When all dimensions are missing, Equation 1 implies that every
hidden node is maximally activated. That allows ALCOVE to
predict base rates of the categories by integrating association
weights across all the training exemplars.

The models were fitted simultaneously to the training and
transfer data, minimizing the sum of the mean squared error on
training trials plus the mean squared error on transfer trials.
The resulting best fits are shown in Table 3. ALCOVE fits both
training and transfer data slightly better than the double-node
model. Figures 7 and 8 show the model’s predictions for these

best simultaneous fits. Figure 8 shows that both models predict
that Symptom sl (presented alone) should be classified as the
rare disease more than 50% of the time and to about the same
degree. (Although both models predict apparent base-rate ne-
glect on Symptom sl, neither fits the transfer results in great
detail. Extended versions of the models that address this prob-
lem are described in Nosofsky et al., in press)

The configural-cue model was also fit to the data. Table 3
shows that it did noticeably worse than ALCOVE and the dou-
ble-node models. In fact, the configural-cue model shows only
slight base-rate neglect, with p (rarejsl) = .531. Because of those
inadequacies, the configural-cue model is not shown in Figures
7 and 8.

Some readers might object that these are unfair comparisons
because ALCOVE has four free parameters, whereas the dou-
ble-node (and configural-cue) model has only two. The purpose
of the presentation here is to compare the basic versions of the
models, and so the inequality in the number of parameters is
unavoidable. However, Nosofsky et al. (in press) used versions
of the models with equal numbers of parameters. In one set of
comparisons, each model was allowed three parameters. For
ALCOVE, the attention-learning rate was set to zero, a priori,
because the category structure used does not have a strongly
asymmetrical distribution of exemplars over dimensions. The
double-node model was given a third parameter by including a
learning rate on an extra bias node. The bias node was neces-
sary for the double-node model to make predictions about base
rates on null patterns, that is, when all dimensions of the stimu-
lus were missing. The results were that ALCOVE consistently
did as well as the double-node model, even with equal numbers
of parameters.

ALCOVE generates the apparent base-rate neglect on Symp-
tom sl because of interactions between exemplars during learn-
ing. For purposes of explanation, consider a simpler case with
just two symptoms (two input dimensions). Figure 9 shows the
frequencies of rare and common diseases for each combination
of Symptoms a and b, out of a total of 104 cases. The top-left cell
of Figure 9 indicates that the symptom pair (a, b) occurred 11
times out of 104, with 10 rare cases and 1 common case. The
frequencies were selected so that the conditional probability of
the rare disease given Symptom a alone (or Symptom b alone) is
15/30 = .50.

The table in Figure 9 also acts as a geometric representation
of the input space. The four cells are the four training exem-
plars. To model this situation in ALCOVE, there would be four
hidden nodes with their receptive fields centered on the four
cells of the table. Each hidden node has an association weight
with the two disease (category) nodes (not shown).

The node centered on the symptom pair (a, b) should acquire
a strong positive association weight with the rare disease node,
because (a, b) is the rare disease 10 times as often as it is the
common disease. By similar reasoning, one might suppose that
the node centered on (a, b*) should acquire a strong negative
association weight with the rare disease node, because it is the
rare disease only about a third as often as it is the common
disease. In fact, when ALCOVE is run on this situation, the
magnitude of the negative association weight from (a, b% is
much less than the magnitude of the positive association weight
from (a, b). That is because the (a, b*) node has a neighbor, (@*,
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Table 3

Fits of ALCOVE, the Double-Node, and Configural-Cue Models to Learning and Transfer Data

RMSD Parameter value
Model Total Training Transfer ¢ A c Ao
ALCOVE .101 .106 .0955 1.06 .0393 2.55 0.0
Double node 116 .109 123 1.64 0122 — —
Configural cue 151 113 .181 2.07 .00312 — —

Note. Dashes indicate nonapplicability. RMSD = root-mean-squared deviation; ALCOVE = attention

learning covering map.

b*), that gains a fairly strong negative association with the rare
disease node. The three nodes, (a, b*), (a* b), and (a* b*), facili-
tate each other’s learning because of their mutual similarity and
because they all tend to be assigned to the common disease,
and so their individual association weights remain relatively
small. On the other hand, the association weight from (a, b)
must become especially large to compensate for its competing
neighbors.

When the single symptom (a, ~) is presented, both the (a, b)
and (a, b* nodes are fully activated, whereas the (2*% b) and (a*
b* nodes are both partially (and equally) activated. The net
result is that the strong positive association weight from (a, b) to
the rare disease node is sufficient to overcome the weaker nega-
tive associations from the other exemplars, and the rare disease
node receives the greater activation. The model thereby dis-
plays apparent base-rate neglect when presented with single
symptoms.

In summary, three points have been made in this section.
First, the exemplar-based ALCOVE model has been shown to
fit the learning and transfer data as well as the double-node
model, whereas previously proposed exemplar-based models
did not. In particular, ALCOVE accounts for apparent base-
rate neglect as well as the double-node model. Second, there is
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Figure7. Probability (Pr) of correct category choice during training.
(Graph shows means for blocks of 10 trials, although data were fitted
trial by trial. Because of averaging within blocks, it appears here that
ALCOVE [attention learning covering map] has a worse fit than the
double-node model, but the trial-by-trial fit is in fact slightly better.
Results shown are for simultaneous fit to training and transfer data)

no claim being made that ALCOVE is significantly better than
the double-node model in this particular situation. Rather,
ALCOVE has an advantage because it also fits several other
situations where the double-node model fares less well or is
inapplicable. Third, ALCOVE shows apparent base-rate ne-
glect because the combination of error-driven learning and sim-
ilarity-based hidden-node activations causes exemplars to in-
teract during learning.

Interactive Exemplars in Linearly and Nonlinearly
Separable Categories

As suggested in the introduction, ALCOVE is only indirectly
sensitive to the shape of category boundaries and is primarily
affected by the clustering of exemplars and their distribution
over stimulus dimensions. In particular, whether a category
boundary is linear or nonlinear should have no direct influ-
ence, and it is possible that nonlinearly separable categories
would be easier to learn than linearly separable ones.

A case in point comes from the work of Medin and Schwan-
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Figure 8. Probability (Pr) of choosing the rare category given single
symptoms after training. (Shown are results for simultaneous fit to
training and transfer data. Points are connected by lines for visual
appeal; no continuum of symptoms is meant to be implied. AL~
COVE = attention learning covering map)
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Figure 9. A two-symptom situation to illustrate base-rate neglect in
ALCOVE (attention learning covering map,) (Numbers in each cell
indicate the frequency that the cell is assigned to the rare or common
disease)

enflugel (1981, Experiment 4). They compared two category
structures, shown in Figure 10. One structure was linearly sepa-
rable, whereas the other was not. The two structures were equal-
ized, however, in terms of mean city-block distance between
exemplars within categories and between exemplars from dif-
ferent categories. For example, the mean city-block separation
of exemplars within categories for the linearly separable struc-
tureis 2+ 2+ 2+ 2+ 2+ 2)/6 = 2, and the mean within-cate-
gory separation for the nonlinearly separable category is the
same, ({ + 2 + 3 + 1 + 2 + 3)/6 = 2. The mean separation
between categories is 124 for both structures.

When human subjects were trained on the two structures, it
was found that the linearly separable structure was no easier to
learn than the nonlinearly separable structure. This result con-
tradicts predictions of prototype models, such as the single- and
double-node models of Gluck and Bower (1988a, 1988b; see
Nosofsky, 1991, for a derivation that they are a type of proto-
type model), but is consistent with models that are sensitive to
relational information, such as Medin and Schaffer’s (1978)
context model, and Nosofsky’s GCM. In another experiment
run by Medin and Schwanenflugel (1981, Experiment 3), a sig-
nificant advantage for nonlinearly separable categories was ob-
served.

The configural-cue model is able to show an advantage for
the nonlinearly separable category, if the scaling constant ¢ is
not too large. Gluck (1991; Gluck et al., 1989) has shown that if
the triplet nodes are removed from the configural-cue represen-
tation, leaving only the singlet and doublet nodes, the advantage
for the nonlinearly separable categories remains. Unfortu-
nately, such a move requires an a priori knowledge of which
combinations of dimensions will be useful for the task.

When ALCOVE is applied to these structures, the nonlin-
early separable structure is indeed learned faster than the lin-
early separable structure. This result is true for every combina-
tion of parameter values [ have tested (a wide range). In particu-
lar, attentional learning is not needed to obtain this result.

Therefore, it is the interaction of the exemplars, due to similar-
ity and error-driven learning, that is responsible for this perfor-
mance in ALCOVE. Whereas the mean city-block separations
of exemplars were equalized for the two category structures, the
mean similarities of exemplars were not equal. ALCOVE ex-
ploits that difference in the learning rule for association
weights (Equations 1 and 5). The flavor of this explanation is no
different from that given for the context model (Medin &
Schwanenflugel, 1981). The point is not that ALCOVE neces-
sarily fits these data better than other models with exemplar-si-
milarity-based representations like Medin and Schaffer’s (1978)
context model but that error-driven learning in ALCOVE does
not impair its ability to account for these fundamental data.

Summary

The importance of dimensional attention learning was dem-
onstrated by applying ALCOVE to the six category types from
Shepard et al. (1961) and to the Medin et al. (1982) categories
involving correlated dimensions. The importance of interac-
tion between exemplars, produced by similarity-based activa-
tions and error-driven association-weight learning, was demon-
strated in accounting for apparent base-rate neglect and the
ability to learn nonlinearly separable categories faster than lin-
early separable categories. ALCOVE was shown to be quantita-
tively comparable or superior to the double-node and configu-
ral-cue models. Subsequent sections address domains that use
continuous dimensions to which the double-node and configu-
ral-cue models, as presently formulated, are not applicable.

ALCOVE Versus Standard Back Propagation

As stated in the introduction, ALCOVE differs from stan-
dard back propagation in its architecture, behavior, and goals.
A standard back-propagation network (later referred to as back-
prop) is a feed-forward network with linear-sigmoid nodes in its
hidden layer and with hidden weights and output weights that
learn by gradient descent on error. Linear-sigmoid nodes have
activation determined by

linearly
separable

non-linearly
separable

Figure 10. Category structures used by Medin and Schwanenflugel
(1981, Experiment 4). (The linearly separable structure is a subset of
Type IV in the Shepard, Hovland, and Jenkins, 1961, studies [cf. Figure
4], whereas the nonlinearly separable structure is the corresponding
subset from Type I11)
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The linear-sigmoid function was motivated as a generalized, or
smoothed, version of the linear-threshold function in neuron-
like perceptrons (Rumelhart et al., 1986). In contrast, the acti-
vation functions of ALCOVE were motivated by molar-level
psychological theory. The activation profiles of hidden nodes
in ALCOVE and in backprop, as determined by Equations 1
and 7, are shown in Figure 11. Three important differences
between the activation profiles are evident: First, the hidden
node from ALCOVE has a limited receptive field, which means
that the node is significantly activated only by inputs near its
position. On the contrary, the hidden node from backprop is
significantly activated by inputs from an entire half space of the
input space. That difference in receptive field size has impor-
tant consequences for how strongly hidden nodes interact dur-
ing learning, as is demonstrated shortly. A second difference is
that the level contours of the ALCOVE node are iso-distance
contours (diamond shaped for a city-block metric), whereas the
level contours of the backprop node are linear. (Examples of
level contours are shown in Figure 11 by the lines that mark
horizontal cross sections through the activation profiles) This
implies that backprop will be especially sensitive to linear
boundaries between categories. A third difference between the
structure of ALCOVE and backprop is that the linear level
contours of the backprop node can be oriented in any direction
in input space, whereas attention learning in ALCOVE can
only stretch or shrink along the given input dimensions (recall
the discussion accompanying Figure 3). Those three differ-
ences result in shortcomings of backprop that are now demon-
strated with examples.

Insensitivity to Boundary Orientation

When backprop is applied to the six category types of Shep-
ard et al. (1961; see Figure 4), Type IV is learned almost as fast
as Type I and much too fast compared to human performance.
(Backprop does not learn Type IV quite as quickly as Type I
because it is also sensitive to the clustering of exemplars near
the boundary; eg., see Ahmad, 1988) This result holds over a
wide range of learning rates for the two layers of weights, with
or without momentum (Rumelhart et al., 1986), for different

Figure 11. Activation profile of a hidden node in ALCOVE (atten-
tion learning covering map) is shown on the left (Equation 1, with r=
g =1). (Activation profile of a hidden node in standard back propaga-
tion is shown on the right {Equation 7].)

ranges of initial weight values and over a wide range in the
number of hidden nodes. Type IV is learned so quickly by back-
prop because it can accentuate the diagonal axis through the
prototypes of the two categories (Exemplars 1 and 8 in Figure
4), unlike ALCOVE, In other words, the linear level contours of
the backprop nodes align with the linear boundary between the
categories in Type IV, despite the diagonal orientation of that
boundary. ALCOVE cannot direct attention to diagonal axes
(see discussion accompanying Figure 3), so it does not learn
Type IV so quickly.

Oversensitivity to Linearity of Boundary

When backprop isapplied to the linearly or nonlinearly sepa-
rable categories of Medin and Schwanenflugel (1981; see Figure
10), the result is that the linearly separable structure is learned
much faster than the nonlinearly separable one, contrary to
human (and ALCOVE’) performance (e.g., Gluck, 1991). The
reason is that the linear level contours of backprop’s hidden
nodes can align with the linear boundary between categories.

Catastrophic Interference

McCloskey and Cohen (1989) and Ratcliff (1990) have shown
that when a backprop network is initially trained on one set of
associations, and subsequently trained on a different set of asso-
ciations, memory for the first set is largely destroyed. Such
catastrophic forgetting is not typical of normal humansand isa
major shortcoming of backprop as a model of human learning
and memory. As ALCOVE is also a feed-forward network that
learns by gradient descent on error, it is important to test it for
catastrophic forgetting.

A simple demonstration of catastrophic forgetting in back-
prop is shown in Figure 12 (a-c). The task is to learn the four
exemplars in two phases: First learn that (0, —1) - “box” and
1, 0) > “circle”, then in a second phase learn that (0, +1) -
“box” and &1, 0) = “circle”. The two graphs in panels b and ¢
show typical results of applying backprop and ALCOVE, re-
spectively. Each graph shows probability of correct categoriza-
tion as a function of training epoch. Phase 1 consisted of Train-
ing Epochs 1 t0 10, and Phase 2 began after the 10th epoch. Two
trends are clear in the backprop results: In Phase 1, generaliza-
tion performance on the untrained exemplars shifts dramati-
cally to worse than chance, and in Phase 2 performance on the
Phase 1 exemplars rapidly decays to worse than chance. On the
contrary, ALCOVE shows virtually no interference between
Phase 1 and Phase 2 exemplars (Figure 12¢).

For the results in Figure 12b, the backprop network was made
maximally comparable to ALCOVE. Thus, its input nodes
were the same as in ALCOVE, and its output nodes were linear
with weights initialized at zero, as in ALCOVE, with probabil-
ity correct computed with Equation 3. There were 32 hidden
nodes, with weights and thresholds initialized to random values
between —2.5 and +2.5. Learning rates for output and hidden
weights were both 0.06, with epoch updating. The same qualita-
tive trends appear when using other parameter values and num-
bers of hidden nodes and for standard backprop using linear-
sigmoid output nodes and output weights initialized to small
random values. The results in Figure 12¢c were obtained by run-
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Figure 12. a: Category structure for demonstrating catastrophic forgetting in back propagation and
resistance to forgetting in ALCOVE (attention learning covering map,) b: Typical performance of back-
propagation on the structure shown in Figure 12a. ¢: Performance of ALCOVE on the structure shown in

Figure 12a. Pr = probability.

ning ALCOVE with four hidden nodes centered on the four
exemplars, using ¢ = 1.0, A, = .15, ¢ = 2.0, and )\, = .06, with
epoch updating.

Backprop shows such severe interference because the recep-
tive fields of its hidden nodes cover such a huge portion of input
space. When training on Phase 1, the hidden nodes shift so that
their linear level contours tend to align with the right diagonal
in Figure 12a so that the two Phase 1 exemplars are accurately
discriminated. In addition, nodes that happened to be initially
placed in such an opportune orientation have their weights ad-
justed first and fastest. Unfortunately, those receptive fields
cover the untrained Phase 2 exemplars in the same way, and the
severe drop in generalization accuracy is the result. When sub-
sequently trained on the Phase 2 exemplars, the same align-
ment of receptive fields occurs, but the category associations

reverse, yielding the reversal of performance on the previously
trained exemplars.

The receptive fields of hidden nodes in ALCOVE are much
more localized, so that associations from exemplars to catego-
ries are not strongly affected by other exemplars, unless the
exemplars are very similar. In general, the degree of interfer-
ence generated in ALCOVE depends on two factors: the size of
the receptive fields, as measured by the specificity parameter, c,
and whether the exemplars from the two training phases have
the same relevant or irrelevant dimensions.

The previous example was used because it was relatively easy
to visualize the workings of the two models in terms of how
receptive fields get distributed over the stimulus space. The
relatively small interference in ALCOVE does not depend on
using that particular configuration, however. Similar results



36

also occur in a situation used by Ratcliff (1990) to demonstrate
catastrophic forgetting in backprop. Ratcliff used the “4—4 en-
coder” problem, in which a network with four input nodes and
four output nodes must learn to reproduce isolated activity in
each input node on the output nodes. That is, there are just four
training patterns: ¢-1,~1,—1,-1) > &1, —1,—1,—1), 1, +1,
-1, ~1)= (=1, +1, —1, —1), etc. (These patterns use values of
—1 instead of 0 merely to maintain symmetry. Similar qualita-
tive conclusions apply when 0 is used) The models are initially
trained on just the first three training pairs; then, in the second
phase of training, they are shown only the fourth pattern pair.

For this demonstration, the backprop network had three hid-
den nodes, the same number as used by Ratcliff (1990). To
maximize comparison with ALCOVE, the four output nodes
were linear, and response probabilities were computed with
Equation 3, using ¢ = 1.0. Hidden and output weights had learn-
ing rates of 0.2. Hidden weights and biases were initialized
randomly in the interval (-2.5, 4+2.5). Similar qualitative trends
obtain for other parameter values, numbers of hidden nodes,
etc. .., Ratcliff, 1990); 200 different randomly initialized runs
were averaged.

ALCOVE used four hidden nodes, corresponding to the four
training exemplars. Specificity of the hidden nodes was set to
¢ = 2.0, with association-weight learning rate of 0.05 and atten-
tion-learning rate of 0.02. The response scaling constant was
set as in the backprop model, ¢ = 1.0. Similar qualitative trends
obtain for other parameter values.

Both models were trained for 100 epochs on the Ist three
pattern pairs, then 100 epochs on the fourth pattern-pair. Re-
sponse probabilities at the end of each phase are shown in Table
4. Backprop shows slightly more generalization error in Phase
1, classifying the untrained fourth pattern as one of the three
trained patterns more than ALCOVE does. Backprop shows
considerable retroactive interference from Phase 2 training:
Correct response probabilities on the Ist three patterns drop
from 70% to about 40%, and there is considerable bias for back-
prop to choose the fourth output category even when presented
with one of the 1st three input patterns. By contrast, ALCOVE
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shows no such severe interference. Correct response probabili-
ties on the Ist three patterns decrease only slightly as a conse-
quence of subsequent training on the fourth pattern. The exact
amount of interference in ALCOVE is governed by the specific-
ity and the attention-learning rate; the values used here were
comparable to those that best fit human learning data in other
studies.

In conclusion, the catastrophic forgetting that plagues back-
prop is not found in ALCOVE because of its localized receptive
fields. ALCOVE is able to show significant interference only
when the subsequently trained patterns are highly similar to the
initially trained patterns or when the second phase of training
has different relevant or irrelevant dimensions than the first
phase.

Localized Receptive Fields Versus Local Representations

Although the receptive fields of hidden nodes in ALCOVE
are relatively localized, the hidden-layer representation is not
strictly local, where local means that a single hidden node is
activated by any one stimulus. In ALCOVE, an input can par-
tially activate many hidden nodes whose receptive fields cover
it, so that the representation of the input is indeed distributed
over many hidden nodes. (This is a form of continuous coarse
coding; see Hinton, McClelland, & Rumelhart, 1986) How-
ever, the character of that distributed representation is quite
different from that in backprop because of the difference in
receptive fields (Figure 11). One might say that the representa-
tion in backprop is more distributed than the representation in
ALCOVE and even that the representation in backprop is too
distributed.

There are ways to bias the hidden nodes in backprop toward
relatively localized representations, if the input patterns are re-
stricted to a convex hypersurface in input space. For example, if
the input patterns are normalized, they fall on a hypersphere in
input space, in which case the linear level contours of the back-
prop hidden nodes can “carve off ” small pieces of the sphere.
For concreteness, consider a two-dimensional input space, so

Table 4
Results of Applying Back Propagation or ALCOVE to the 4-4 Encoder Problem
Input Back propagation ALCOVE
End of Phase 1
+1-1-1-] .70.10.10 .10 .70 .10 .10 .10
-1+1-1-1 .10.70 .10.10 .10.70 .10 .10
-1 -1+1-1 .10.10.70 .10 .10.10 .70 .10
—1-1-1+1 .28 .31 .29 .12 27 .27 .27 .19
End of Phase 2
+1-1-1-1* .40 .07 .08 .45 .69 .09 .09 .13
-1 +1-1-1* .08 .39 .07 .46 .09 .69 .09 .13
—1-1+1-1* .08 .07 .40 45 .09 .09 .69 .13
-1 -1-1+1 .10.10.10.70 .10.10.10.70

Note.

Data are the probabilities of choosing the corresponding output category. (For ¢ = 1.0 and four

output nodes, asymptotic correct performance in backprop is 0.71) ALCOVE = attention learning cover-

ing map.
2 Input patterns were not trained during that phase.
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that the normalized input patterns fall on a circle. A given
linear-sigmoid hidden node “looks down” on this space and
makes a linear cut through it, so that all input points to one side
of the line produce node activations greater than .5, and all
points to the other side of the line produce node activations less
than .S. If the linear cut is made near the edge of the circle, then
only a small piece of the available input space causes node
activationsabove.5. In particular, Scalettar and Zee (1988) dem-
onstrated that such localized representations are a natural con-
sequence of learning noisy input patterns (with weight decay).
Unfortunately, a system that learns a localized representation
might also unlearn it, and so it is not clear if the approach taken
by Scalettar and Zee could solve the problem of catastrophic
forgetting in backprop.

Goals of Backprop Versus Goals of ALCOVE

I have tried to show that backprop and ALCOVE differ in
their architecture and behavior. They are also different in their
goals. A common goal of applications of backprop is to study
the distributed representation discovered by the hidden nodes
(e, Hanson & Burr, 1990; Lehky & Sejnowski, 1988; Rumel-
hart et al., 1986; Sejnowski & Rosenberg, 1987) but not to model
the course of learning per se. The goals of ALCOVE are quite
different. ALCOVE begins with a psychological representation
derived from multidimensional scaling that is assumed to re-
main unchanged during learning. ALCOVE models the course
of learning by adjusting attention strengths on the given dimen-
sions and by adjusting association weights between exemplars
and categories.

Learning Rules and Exceptions

So far the exemplar-similarity-based representation in AL-
COVE has been compared with the featural- and configural-
cue representations used in the network models of Gluck and
Bower (1988a, 1988b) and with the “half-space receptor” repre-
sentation in backprop. None of these representations directly
addresses the fact that subjects in concept-learning tasks and
many categorization tasks consciously generate another repre-
sentation: rules (e.g., Bourne, 1970; Shepard et al., 1961). Ulti-
mately, the relation of ALCOVE to rule generation must be
determined. In this section I outline the beginnings of a theory
of how ALCOVE might steer rule generation. The discussion is
meant to be exploratory, suggestive, and perhaps provocative,
but not conclusive.

One of the most widely known connectionist models of learn-
ing is the past-tense acquisition model of Rumelhart and
McClelland (1986). That model learned to associate root forms
of English verbs with their past-tense forms. The network con-
sisted of input and output layers of nodes that represented
Wickel features, which are triplets of phoneme features, one
feature from each of three consecutive phonemes. The network
had no hidden layer, and it learned the connection weights
from the inputs to the outputs by using the perceptron conver-
gence procedure, which can be considered to be a limiting case
of backprop.

One of the main aspects of past-tense learning that Rumel-
hart and McClelland (1986) tried to model is the so-called

three-stage or U-shaped learning of high-frequency irregular
verbs. Children acquire these verbs, such as go-went, very early
on, in Stage 1. Subsequently, they begin to acquire many regular
verbs that form the past tense by adding ed. In this second
stage, children apparently overgeneralize the rule and regular-
ize the previously well-learned irregular verbs. For example,
they might occasionally produce forms like goed or wented.
Finally, in Stage 3, the high-frequency irregular verbs are re-
learned. Three-stage learning has traditionally been used as
evidence that people generate rules. The second stage is ex-
plained by suggesting that children literally learn the rule and
overapply it. Rumelhart and McClelland’s (1986) model had no
mechanism for explicit rule generation, so if it could account
for three-stage learning, it would pose a challenge to the neces-
sity of rule-based accounts.

The Rumelhart and McClelland (1986) model was indeed
able to show three-stage learning of irregular verbs, but that was
accomplished only by changing the composition of the training
patterns during learning. The network was initially exposed to
eight high-frequency irregular verbs and only two regulars.
After 10 epochs of training, the network achieved fairly good
performance on those verbs. Then the training set was changed
to include 334 additional regular verbs and only 76 more irregu-
lars, so the proportion of regulars suddenly jumped from 20%
to 80%. As might be expected (especially considering the results
on catastrophic forgetting discussed in the previous section),
when flooded with regular verbs, the network rapidly learned
the regulars but suffered a decrement in performance on the
previously learned irregulars. With continued training on the
full set of verbs, the network was able to relearn the irregulars.
Thus, the transition from Stage | to Stage 2 was accomplished
only with the help of a deus ex machina, in the form of a radi-
cally altered training set. Rumelhart and McClelland defended
the approach by saying, “It is generally observed that the early,
rather limited vocabulary of young children undergoes an ex-
plosive growth at some point in development (Brown, 1973).
Thus, the actual transition in a child’s vocabulary of verbs
would appear quite abrupt on a time-scale of years so that our
assumptions about abruptness of onset may not be too far off
the mark” (Rumelhart & McClelland, 1986, p. 241). Several
critics (e.g., Marcus et al., 1990; Pinker & Prince, 1988) were left
unconvinced and argued that a cogent model would have the
transition emerge from the learning mechanism, not exclu-
sively from a discontinuity in the training corpus.

Connectionists are left with the challenge of how to model
three-stage acquisition of high-frequency irregulars without
changing the composition of the training set during learning.> It
is now shown that ALCOVE can exhibit three-stage learning of

3 Plunkett and Marchman (1991) showed that a backprop network
trained on an unchanging set exhibited micro U-shaped learning,
meaning that performance on individual patterns and pattern types
fluctuated from epoch to epoch, but gradually improved overall. Their
simulations did not exhibit macro U-shaped learning, in which there is
a decrease in accuracy on all irregulars over several consecutive
epochs, accompanied by an increase in accuracy on regulars, but they
argued that such macro U-shaped learning does not occur in children
either. Marcus et al. (1990) reported that some aspects of macro U-
shaped learning do occur, although they are indeed subtle.



38 JOHN K. KRUSCHKE

SHOMOROIE

® ®
® ®E (& (7]

1 3 g

45 6 8

Figure 13. Category structure used for demonstration of three-stage
learning of rules and exceptions. (The exemplars marked with an R
follow the rule, which separates the two categories by the dotted line.
Exemplars marked with an E are exceptions to the rule. The x values of
the exceptions were 4.4 and 4.6)

high-frequency exceptions to rules in a highly simplified ab-
stract analogue of the verb-acquisition situation. For this dem-
onstration, the input stimuli are distributed over two continu-
ously varying dimensions as shown in Figure 13. Of the 14 train-
ing exemplars, the 12 marked with an R can be correctly
classified by the simple rule, “If the value of the exemplar on
Dimension 1 is greater than 4.5, then the exemplar is an in-
stance of the box category; otherwise it is in the circle category”
This type of rule is referred to as a Type I rule by Shepard et al.
(1961), because it segregates members of two categories on the
basis of a single dimension. It is also called a value-on-dimen-
sion rule by Nosofsky, Clark, and Shin (1989), for obvious rea-
sons. In Figure 13 there are two exceptions to the rule, marked
with an E The exceptions are presented with higher relative
frequency than individual rule exemplars. The analogy to the
verb situation is that most of the exemplars are regular, in that
they can be classified by the rule, but a few exemplars are irregu-
lar exceptions to the rule. The circle and box categories are not
supposed to correspond to regular and irregular verbs; rather,
they are arbitrary output values (-1 and —1) used only to estab-
lish distinct types of mappings on the rule-based and excep-
tional cases.

ALCOVE was applied to the structure in Figure 13, using 14
hidden nodes and parameter values near the values used to fit
the Medin et al. (1982) data: ¢ = 1.00, A, = 0.025, ¢ = 3.50, and

. = 0.010. Epoch updating was used, with each rule exemplar
occurring once per epoch and each exceptional case occurring
four times per epoch, for a total of 20 patterns per epoch. (The
same qualitative effects are produced with trial-by-trial updat-
ing, with superimposed trial-by-trial “sawteeth,” what Plunkett
and Marchman, 1991, called micro U-shaped learning) The
results are shown in Figure 14. The learning curve for the excep-
tions (filled circles) shows a distinct nonmonotonicity so that
near Epochs 10 to 15 there is a reversal of learning on the excep-
tions. (ALCOVE is always performing gradient descent on total
error, even when performance on the exceptions drops, because
performance on the rule cases improves so rapidly) The other
important feature of the results is that the learning curves for
exceptional and rule cases cross over, so that early in training
the high-frequency exceptions are learned more accurately, but
later in learning the rule cases are learned better. Thus, we have
a clear case of three-stage, U-shaped learning.

It should be emphasized that in this demonstration, all pa-
rameter values were fixed throughout training, and the compo-
sition of the training set was also fixed throughout training.
Moreover, there were no order-of-presentation effects because
epoch updating was used.

The results shown here should not be construed as a claim
that ALCOVE is appropriate for modeling language acquisi-
tion. On the contrary, linguistic stimuli, in their natural con-
text, might not be adequately represented by a multidimen-
sional similarity space as demanded by ALCOVE (but cf. El-
man, 1989, 1990). Moreover, the results in Figure 14 should not
be taken as a necessary prediction of ALCOVE, as some other
combinations of parameter values do not show crossover or
nonmonotonicities. Rather, the claim is that if such phenom-
ena do occur in human learning, then ALCOVE might very
well be able to model those effects.

How does three-stage learning happen in ALCOVE? In the
initial epochs, the association weights between exemplars and
categories are being established. The association weights from
exceptions grow more quickly because the exceptions are pre-
sented more frequently. The attention strengths are not affected
much in the early epochs because there is not much error propa-
gated back to them by the weak association weights (see Equa-
tion 6). Thus, performance on the exceptions is initially better
than on the rule cases entirely because of relative frequency.

The second stage begins as the association weights get big
enough to back propagate error signals to the attention
strengths. Then attention to the rule-irrelevant dimension rap-
idly decreases (in Figure 13, the vertical dimension shrinks).
That has two effects: The rule cases rapidly increase their
within-category similarity, thereby improving performance,
and the two exceptional cases rapidly increase their between-
categories similarity, thereby decreasing accuracy. In other
words, once the system learns a little about which exemplars

Pr (correct )

epoch

Figure 14. Results of applying ALCOVE (attention learning covering
map) to the rules-and-exception structure of Figure 13. (Filled circles
show probability of correct classification for exceptions, whereas open
diamonds indicate probability of correct classification for the various
rule cases. Pr = probability)
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belong in which category, it temporarily ignores the dimension
that best distinguishes the exceptions, to benefit the ruly
majority.

Such an account of three-stage learning does not prohibit the
simultaneous existence of a distinct rule generating system. On
the contrary, I believe that a more complete model of human
category learning should also include a rule system that would
simultaneously try to summarize and generalize the perfor-
mance of ALCOVE by hypothesizing and testing rules. AL-
COVE could help steer the rule-generating system and act as a
fallback when adequate rules are not yet found. In such a sce-
nario, the rule-generating system is neither epiphenomenal nor
redundant; one major benefit is that rules abstract and unitize
category knowledge so it can be transferred to other tasks and
stimulus domains.

Perhaps the primary question for such a rule-generating sys-
tem is which rules should be hypothesized and tested first? The
behavior of ALCOVE suggests that one should generate and
test rules using the dimensions that are most relevant, where
relevance is measured by the dimensional attention strength
learned in ALCOVE. This approach is akin to ideas of Bourne
et al. (1976), but the notion of driving the rule system with an
attention-learning system is new, as far as I know. Details of
such an interaction are yet to be worked out; I (Kruschke,
1990a, 1990b) described applications of the idea to the results of
Medin, Wattenmaker, and Michalski (1987) and to the learning
of exemplars within the six types of Shepard et al. (1961).

In this section 1 have made two main points: First, ALCOVE
is a connectionist network that can show three-stage learning of
rules and exceptions without changing the composition of the
training set during learning. Second, such a demonstration
does not necessarily challenge rule-based accounts; rather, I
should like to see future work incorporate ALCOVE-like mech-
anisms with rule-based systems to capture a wider range of
human learning. ~

Discussion

I have tried to demonstrate that ALCOVE has significant
advantages over some other models of category learning. AL-
COVE combines an exemplar-based representation with error-
driven learning. The exemplar-based representation performs
better than other models that also use error-driven learning but
with different representations, such as the configural-cue
model and backprop. Error-driven learning performs better
than other models with exemplar-based representations but dif-
ferent learning rules, such as the array-exemplar model (Estes et
al,, 1989; Nosofsky et al,, in press). In the remainder of the
article I discuss variations, extensions, and limitations of AL-
COVE.

Placement of Hidden Nodes

All the simulations reported here assumed that a hidden
node was placed at the position of each training exemplar, and
only at those positions, from the onset of training. That is a
reasonable assumption in some circumstances; for example,
when the subject previews all the training exemplars (without
feedback) before training or when there are so few exemplars

that the subject sees them all within a small number of trials. In
general, however, the model cannot assume knowledge of the
exemplars before it has been exposed to them. There are several
ways to deal with that. One way is to recruit new exemplar
nodes whenever a novel training exemplar is detected (Hurwitz,
1990). This requires some kind of novelty detection and deci-
sion device, which entails the introduction of new parameters,
such as a threshold for novelty. An alternative method is to set
some a priori bounds on the extent of the input space and
randomly cover the space with hidden nodes (Kruschke, 1990a,
1990b). This also entails new parameters, such as the density of
the nodes. A third possibility is to recruit a new node for every
training trial, regardless of novelty. Careful comparison of these
possibilities awaits future research, but I (Kruschke, 1990a,
1990b) reported some preliminary results that the covering
map approach fit training data as well as the exemplar ap-
proach.

Humble Versus Strict Teacher

The simulations reported here assumed the use of a humble
teacher (Equation 4b). This was not an ad hoc assumption, but
was motivated by the fact that feedback in category-learning
experiments is nominal and does not specify the magnitude of
category membership. The humble teachers tell the output
nodes that their activation values should reach at least a certain
level to indicate minimal membership, but there is no upper
limit placed on their activations.

There are situations where a strict teacher is appropriate. Per-
haps the most important use of a strict teacher has been the
modeling of overexpectation error in animal learning (e.g., Ka-
min, 1969; Kremer, 1978; Rescorla & Wagner, 1972). Overex-
pectation occurs when an animal is first trained to associate
Conditioned Stimulus (CS) | with an unconditioned stimulus
(US), denoted CS; = US, then trained on CS, = US, and finally
trained on the compound stimulus (CS; + CS;) = US. The
result is that the final training on the compound stimulus actu-
ally reduces the individual association strengths from CS; and
CS,. A strict teacher with error-driven learning (the Rescorla-
Wagner learning rule) can account for that, because at the be-
ginning of training with the compound stimulus (CS, + CS,),
the double-strength association overshoots the teacher and is
counted as an overexpectation error, causing the individual as-
sociations to be reduced. In that situation, however, there is
reason to believe that the feedback is encoded by the animal as
having a certain magnitude, and not just nominally. For exam-
ple, in many experiments the feedback was magnitude of elec-
tric shock or amount of food.

One difference between humblie and strict teachers regards
asymptotic performance. Strict teachers demand that all exem-
plars are equally good members of the category, in that they all
activate the category nodes to the same degree. Humble
teachers allow more typical exemplars to activate their category
nodes more than peripheral exemplars, even after asymptotic
training. That difference is robust when measured in terms of
category node activations; however, when transformed into re-
sponse probabilities by the choice rule (Equation 3), the differ-
ence is compressed by ceiling and floor effects and becomes
very subtle. For the applications reported in this article, the
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difference in fits, using humble or strict teachers, is slight.
Thus, although I believe the distinction between humble and
strict teachers is conceptually well motivated, it remains for
future research to decide conclusively which is best for model-
ing category learning.

Extensions of ALCOVE

Several reasonable extensions of ALCOVE that might allow
it to fit a wider array of category learning phenomena, without
violating the motivating principles of the model, are possible.

The choice rule in Equation 3 was used primarily because of
historical precedents, but it is not a central feature of the model,
and there might be better ways of mapping network behavior to
human performance. For example, one might instead incorpo-
rate random noise into the activation values of the nodes and
use a deterministic choice rule such as selecting the category
with the largest activation (cf. McClelland, 1991). Also, the par-
ticular choice of teacher values in Equation 4b was arbitrary
and motivated primarily by the precedent of Gluck and Bower
(1988a, 1988b). It might be that a different choice of teacher
values, for example, +1 for “in” and O (instead of —1) for “not
in” would be more appropriate, especially in conjunction with
different response rules.

Many researchers have suggested that training has local or
regional attentional effects, rather than (or in addition to) global
effects (e.g., Aha & Goldstone, 1990; Aha & McNulty, 1989;
Medin & Edelson, 1988; Nosofsky, 1988a). ALCOVE is easily
altered to incorporate local attention strengths by giving each
hidden node j a full set of dimensional attention strengths a;.
In this particular variation there are no new parameters added
because there is still just one attention-learning rate. It remains
to be seen if exemplar-specific attention strengths, or some com-
bination of exemplar-specific and global attention strengths,
can account for an even wider range of data.

A related approach to introducing local attentional effects is
to adapt individual hidden node specificities. Specificity learn-
ing (by gradient descent on error) would adjust the receptive-
field size of individual hidden nodes, so that nodes surrounded
by exemplars assigned to the same category would enlarge their
receptive fields to encompass those other exemplars, whereas
nodes near exemplars assigned to other categories would re-
duce their receptive fields to exclude those other exemplars.
One implication is that asymmetric similarities (Rosch, 1975;
Tversky, 1977) would evolve: Peripheral or boundary exemplars
would be more similar to central or typical exemplars than vice
versa, because the receptive field of the central exemplar would
cover the peripheral exemplar, but the receptive field of the
peripheral exemplar would not cover the central exemplar.

Another possible extension retains global dimensional atten-
tion strengths but changes the dynamics of attention learning.
In this article it was assumed that the attention strengths o; were
primitives in the formalization, in that attention strengths were
not themselves a function of some other underlying variables.
If, however, each attention strength «; is some nonlinear func-
tion of an underlying variable 8;, then gradient descent with
respect to §; will lead to different changes in «; than gradient
descent with respect to «; itself. For example, suppose we let
;= 1/(1 + ¢®). This has three potentially desirable features:

First, it automatically keeps the attention strengths o; nonnega-
tive, so that it is not necessary to clip them at zero. Second, it
automatically keeps the attention strengths bounded above, so
that there is a built-in “capacity” limit (cf. Nosofsky, 1986).
Third, and perhaps most important, the gradient-descent learn-
ing rule for §; is the same as the learning rule for o, (Equation 6)
except for the inclusion of a new factor, da;/ 38, = o, (1 — ;). This
implies that the attention strength will not change very rapidly
if it is near one of its extreme values of +1 or 0. In particular, if
the system has learned that one dimension is highly relevant
(@, nearly 1) and a second dimension is irrelevant (q,, nearly 0),
then it will be reluctant to change those attention strengths.
Such an extension might allow ALCOVE to model the ease
shown by adults to learn intradimensional feedback reversals
relative to interdimensional relevance shifts (Kendler &
Kendler, 1962), which ALCOVE cannot capture in its present
form (W, Maki, personal communication, October 1990).

Limitations of ALCOVE

ALCOVE applies only to situations for which the stimuli can
be appropriately represented as points in a multidimensional
psychological similarity space. Moreover, ALCOVE assumes
that the basis dimensions remain unchanged during category
learning, and it does not apply to situations in which subjects
generate new dimensions of representation, or otherwise re-
code the stimuli, during learning. Predictions made by AL-
COVE are therefore based on two sets of premises: One set
regards the representational assumptions just stated. The other
set regards the exemplar-similarity-based architecture and
error-driven learning rules of the model. If ALCOVE should
fail to capture data from a given situation, either or both of the
sets of premises might be wrong.

Another, perhaps more severe, limitation of ALCOVE is that
it does not have a mechanism for hypothesizing and testing
rules, whereas people clearly do. As suggested in a previous
section, ALCOVE might subserve a rule-generating system,
steering its selection of candidate rules. Until such a combina-
tion of systems is created, Holland, Holyoak, Nisbett, and Tha-
gard’s (1986) assessment of the Rescorla-Wagner learning rule

4 Hurwitz (1990; “hidden pattern unit model Version 2”) indepen-
dently developed a closely related model that had hidden nodes with
activation function determined by a multiplicative similarity rule (Me-
din & Schaffer, 1978). For direct comparison with ALCOVE’s hidden
nodes, Hurwitz’s activation function can be formally reexpressed as
follows:

gl =TT (1/1 + eb®)hire™ = exp’[— T In (1 + €479 b, — 2],
i i
—

«;
where k is a constant. Thus, Hurwitz’s model can be construed as
a version of ALCOVE with r = ¢ = 1 in Equation 1 and with o; = In
(1 + e% ~¥), Hurwitz’s model therefore keeps the attention strengths o;
nonnegative but unbounded above. Gradient descent with respect to §;
results in the right-hand side of Equation 6 except for the absence of the
specificity ¢ and the inclusion of a new factor, da,/38; = (1 — € ). That
causes attention strengths near zero to be reluctant to change, but
causes large attention strengths to change rapidly.
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might also apply to ALCOVE: “The limits of [Rescorla and
Wagner’s] approach can be characterized quite simply—their
equation is generally able to account for phenomena that pri-
marily depend on strength revision but is generally unable to
account for phenomena that depend on rule generation”

(p. 167).
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Appendix

Derivation of Learning Rules

Here are derived the learning rules used in ALCOVE. Learning of
any parameter in the model is done by gradient descent on a cost
function such as sum-squared error. The purpose is to determine gra-
dient-descent learning equations for the attention strengths, «;, and the
association weights, w;,”“. All the derivations are simple insofar as they
involve only the chain rule and algebra. On the other hand, they are
complicated insofar as they involve several subscripts simultaneously,
and care must be taken to keep them explicit and consistent. Sub-
scripts denoting variables are in lowercase letters. Subscripts denoting
constants are in uppercase letters. Vector notation is used throughout
the derivations: Boldface variables denote vectors. For example, & =
[+ & - - -7 is the column vector of output activation values for
the current stimulus.

The General Case

I first compute derivatives using an unspecified cost function C and
then treat the specific case of sum-squared error. Suppose that C is
some function of the output of the network and perhaps of some other
constants (such as teacher values for the output nodes). In general, any
parameter x is adjusted by gradient descent on C, which means that the
change in x is proportional to the negative of the derivative: Ax =
-\, 8C/dx, where A, is a (nonnegative) constant of proportionality, called
the learning rate of parameter x.

I begin by rewriting Equation 1 in two parts, introducing the nota-
tion net/*:

net" = (¥ o;|h; — a/|D)"" and
in
i

al'! = exp [—c(net/ )], (A1)

where r and ¢ are positive numbers. The special case of 7 = 1 (city-block
metric) and ¢ = 1 (exponential-similarity decay) are subsequently
treated.

Because the output nodes are linear (Equation 2), the derivative of C
with respect to the association weights between hidden and output
nodes is

aC  IC P _ oC .
= = ay .
W O™ W™ da ™

«

(A2)

The derivative dC/da™ must be computed directly from the defini-
tion of C, but it can presumably be evaluated locally in the Kth output
node. Hence, the weight change resulting from gradient descent is lo-
cally computable.

In the applications reported in this article, there was never a need to
alter the hidden node positions or specificities. Therefore, I do not
compute the derivatives of the hidden node coordinates or specifici-
ties, although they certainly can be computed (e.g., Robinson, Niran-
jan, & Fallside, 1988). Now consider the attention strengths «,. First
note that

aC _ 4C da™ da"
67:,=WWT¢,=[”. CAou + * +)

X[ o owge - |00 a0y (A32)
Computation of 3a;**/de, requires a bit more work:
hid hid hid
da/™ _ da" . dnet™ ahidcg (net Midya-D
aal anetjh‘d aal 7 7
1 . )
X=(Z a;|h; — a/ |V hy — a/"|"
r in
i
= —ajhid(,' 2 (net]’"d)(q_') I h]l - a,i" l r. (A3b)

r

Substituting Equation A3b into Equation A3a yields

aC ( aC ou,)
o _ Wy
hl:d

aa 7 E
X aléc % (net @ | by — a/*|". (A4)

out
out aak
k
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The factors of Equation A4 are all available to input node 7 if one
permits backwards connections from hidden nodes to input nodes that
have connection weight equal to the fixed value 1. (Usually in back
propagation the backward links are conceived as having the same
value as adaptive forward links) The mechanism for computing the
derivatives is the same, in spirit, as that used in “standard” back propa-
gation (Rumelhart, Hinton, & Williams, 1986): The partial derivatives
computed at each layer are propagated backwards through the network
to previous layers.

Equation A4 reveals some interesting behavior for the adaptation of
the attentional parameter o;. The equation contains the factor

}7]_ = ajhid(netjhid)(q_') I h]I - a,m | r.

All the other factors of Equation A4 can be considered constants in the
present context, so that the change in attention g, is proportional to F .
The question now is when is the change large, that is, when is F;signifi-
cantly nonzero? The precise answer depends on the values of gand 7,
but a qualitative generalization can be made about the form of F;. The
graph of F; (not shown) is a “hyper dumbbell” shape that is centered on
the input stimulus, with its axis of symmetry along the Ith dimension.
Hence, the attentional parameter is only affected by hidden nodes
within the hyper dumbbell region.

Sum-Squared Error

Now consider a specific case for the objective function C, the sum-
squared error, as in Equation 4a. Note first that

(Appendix continues on next page)
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This derivative (Equation A5) is continuous and well behaved, even

with the humble-teacher values. Then Equation A5 can be substituted
into each of Equations A2 and A4.

—(tx — ag™). (A35)

Special Case of g=r=1

In the special case when ¢ = r (and in particular when g = r= J), the
learning equation for attention strengths simplifies considerably. In

JOHN K. KRUSCHKE

this special case, the term (net;*) ~ ” in Equation A4 reduces to 1.
The initial computation of /" also simplifies (cf. Equation Al). The
learning rules reported in the text (Equations 5 and 6) are the result.
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Correction to Kornblum et al.

In the article “Dimensional Overlap: Cognitive Basis for Stimulus—Response Compatibility
—A Model and Taxonomy,” by Sylvan Kornblum, Thierry Hasbroucq, and Allen Osman (Psy-
chological Review, 1990, Vol. 97, No. 3, pp. 253-270), erroneous data were included in Figure 2.
Below are the corrected figure and the original caption.
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Figure2. Reaction time and errors (in parentheses) for four different stimulus-response (S-R) ensembles
and the different mapping assignments (from Fitts and Deininger, 1954; in the public domain).




